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Abstract 

Using as an example two coupled harmonic  oscillators, a t ransformat ion  to normal  co- 
ordinates is made using the  classical-type s imul taneous diagonalization o f  quadrat ic  forms,  
and this is t hen  used to develop a procedure for construct ing the  corresponding q u a n t u m  
mechanical  t ransformat ion  to normal  coordinates.  The total  classical t ransformat ion  is 
nonuni ta ry ,  whereas the  q u a n t u m  mechanical  is uni tary as it has to be in order to satisfy 
Von Neumann ' s  theorem. Since the  classical t ransformat ion  has definite steps and is a 
very straightforward procedure,  this could be  a very useful procedure for construct ing 
the  quaf i tum mechanical  t ransformat ion  in m a n y  models,  and /o r  an alternative me thod  
for many  models 

1. Introduction 

The harmonic oscillator is one of the most important problems in modern 
physics. The overriding reason for its dominant role is that complex systems 
can be reduced, by means of Fourier analysis, to solutions of  collections of  
harmonic oscillators. Thus, the harmonic oscillator approximation has become 
one of  the principal methods for studying collective excitations of  many- 
body systems such as collections of  phonons and photons, and thus, in getting 
a better understanding of molecular spectra, blackbody radiation, structure 
of nuclei, etc. Consequently, one of the most frequent and important 
Hamiltonians encountered in all physics is that of the harmonic oscillator, 
and we want to use one of these in this paper to explore forming unitary 
quantum mechanical transformations from nonunitary classical transform- 
ations on the same system. 

Consider the case of  two harmonic oscillators coupled together through 
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their coordinates x 1 and x 2 . The corresponding Hamiltonian for the system 
is taken to be 

H = (pl)2/2ml + (p2)2/2m2 + ml(f.Ol)2(x1)2/2 + m2(co2)2(x2)2/2 + CXlX 2 
(1.1) 

where c is a constant, p refers to momentum, m refers to mass, co to frequency, 
and x to position relative to equilibrium. 

Our objective is to diagonalize the above Harniltonian, thus decoupling the 
two oscillators. This can be done classically by using the simultaneous dia- 
gonalization of quadratic forms. It can also be done by treating p and x as 
quantum mechanical operators and then making a quantum mechanical trans- 
formation on these operators. Our procedure will be to use the straightforward, 
more-simply formed classical transformation to find the quantum mechanical 
transformation, which in general can be quite difficult to explicitly form. 

2. Classicat Diagonatization 

To perform the simultaneous diagonalization of quadratic forms, we will 
essentially use the method of Friedman (1956), and write equation (1.1) in 
matrix form as 

H = ½ [~cMx + YcVx] (2.1) 

where 

X= {Xll, 2= { x.1 I, M= (O 1 0), V = (re;co 2 c ) 
\X2] \X2] m2 m2co~ 

x and x are the transpose matrices of x and 2, respectively, and 5q is the 
velocity of oscillator 1, ~72 is the velocity of oscillator 2, Pl = ml x 1, 
P2 = m2x2- 

Now we recall a theorem from mathematical physics that in order to 
diagonalize two Hermitian matrices by one and the same unitary transforma- 
tion, it is necessary and sufficient that they commute (Mathews & Walker, 
1965a). Thus, we want to make a transformation so that M will commute 
with V, since in equation (2.1) they do not. So, we make a classical trans- 
formation of coordinates from the x's to a new set of  coordinates, y's, by 
letting 

x = Ty, k = v T  (2.2) 

where 
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Note that T is not  a unitary matrix. Under this transformation, H in equation 
(2.1) becomes 

H'  = ½ [~TMT/P + yT"VTy] = ~ IfJ' + yRy] (2.3) 

where R = TVT. 
Now notice that R = T V T  is real and symmetric, 

I [ 001 c/(ml m2) 1/2] 
R (2.4) \c/(mlm2)l/2 002 ] 

so it is Hermitian. Then we recall that any Hermitian matrix A may be dia- 
gonalized by a unitary transformation, with the diagonal elements being real 
and the solutions of the secular equation IA - X/t = 0, where X represents 
the eigenvalues of this equation (Mathews & Walker, 1965b). Thus, R has 
two real eigenvalues 3`i and two independent, real eigenvectors ui, i.e., 
Ru i = 3`ui, where ui is a column matrix having two elements in this case. We 

could denote this by writing u i = Iga].  Then, of course, this leads to the 
\ ] g2 

characteristic equation IR - M I = 0, which can be solved for the allowed 
values of 3,, and the corresponding structure o fg  1 and g2 for each of these 
eigenvalues. The resulting equation is 

00~ - X c / ( m l m 2 )  1/2 
= 0 (2.5) 

c / ( m l m 2 ) l / 2  002 .... X 

which gives 

3, = ½ [(w21 + 002) + ((001 _ 002)2 + 4c2/mlm2) l /2]  (2.6) 

Denote 3̀  for the plus sign by X+ and for the minus sign by X_. Then we can 
find the eigenvectors corresponding to these two eigenvalues. We will call the 
eigenvectors, ui, u+ for X+ and u_ for 3 ` .  

Putting the values of  3,+ from equation (2.6) back into the characteristic 
equation in (2.5) and solving the two resulting equations for gl and g2, we 
find 

u+ = ( (mlm2)l /2 /2c[002 - 002 + ((002 - 002)2 + 4c2/mlm2)a/2]  

and the normalized value, t)+, is then (2.7) 

h+ = 1/(1 + (ml  m2/4c2)(00] - co 2) + (002 _ w22)2 + 4e2/ml  m2) l /2(u  + ) 

(2.8) 
Likewise, placing 3,_ into equation (2.5) and solving the resulting equations 
for gl and g2, 

u_ (mlm2)1/2/2c[00 2 - 00~ + ((00~ - co2) 2 + 4c2/mam2)  a/2] (2.9) 
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and the normalized value, ~_ ,  is then 

h_ = 1/(1 + (mam2/4c2)(co 2 - w 2 + ((oo2 _ w2)2 + 4c2/mlm2)l/2(u_) 
(2.10) 

From fi+ and h_ we can construct the unitary matrix 

U = ( ( ~ + ) ( ~ _ ) ) = ( A B  AB-A) (2.11) 

where 

A = 1/(1 + (mlm2/4c2)(co~ - co~ + ((co~ - 002) 2 + 4c2/mlm2) 1/2 

B = (mlrn2)l/2/2c[co~ - co~ + ((co2 _ co2)2 + 4c2/marn2)a/2] (2.12) 

Note that the determinant o f  Uis 1, and U -1 U = / ,  and U - I  = U* = U. 
Proceeding with this classical-type diagonalization, we use U to transform 

H' (y ,  J0 to the diagonal form H"(q, ct) by  letting 

y = Uq (2.13) 

This gives 

H" - 1 [qU-' U[t + 77U-' TVTUq] = 1 [q[t + ~7U-IRUq] (2.14) - - 2  

However, as can be seen from the matrix multiplications, 

Consequently, the new diagonalized Hamiltonian, H" ,  becomes 

H "  5"2 1"2~_!  , 2 , ~ + ½ c o 2 q ~  (2.16) = g q l  + g q 2 " 2 v a + t t l  

2 = ) , + a n d c o 2  ~ X  . where co+ _ _ 
What has happened to the coordinates under this transformation? From 

equations (2.2) and (2.13), x = Ty = TUq, or 

Notice that TU is the classical transformation to diagonalized variables, and 
it is not unitary. Written out in regular equation form, we have 

xl  =AB/(ml)l /2ql  - A/(mt)  1/2 q2 =A/(ml)l /2(Bql - q2) 
(2.18) 

x2 =A/(m2)l/2ql +AB/(m2) 1/2 q2 =A/(m2)l/2(ql +Bq2)  

with A and B given in equation (2. t 2). 
Inverting the transformation (2.17), 

q = U -1 T - i x  (2 . i9)  



where 

and 

Therefore, 
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(2.20) 

0 t (m2)1 /2  (2.21) 

ql = AB(ml ) I /2x l  + A(m2)  1/:2 x2 = 0~lXl + 0~2X2 
(2.22) 

q2 = -A ( rn l ) l / 2x l  + AB(rnz)  t/2 x2 = ~3Xl - a4x2 

where a l  = A B ( m l )  1/2, ~2 = A(m~)  1/2, or3 = - A(ma)  1/2 , and aa = AB(rn2)V2. 
Note that this transformation may also be found for a simplified Hamiltonian 
by transforming to relative and center of  mass coordinates. For example, the 
above H i n  equation (1.1) with m 1 = m 2 and co 1 = co s is easily done. But for 
a more general H, and above, it takes some good guessing and trying before 
the correct transformation can be found in this manner. 

This classically constructed transformation is now used to see if we can 
find the quantum mechanical transformation to diagonalized variables. 

3. Quantum Mechanical Diagonalization 

Quantum mechanically, the coordinate and momentum operators transform 
like 

q = ~ X ~  O-1 = exp (iS) x exp ( - i S )  (3.1) 

where by construction as long as the volume of  the system remains finite, Sf 
is a unitary operator (Von Neumann, 1931). Thus, our approach will be to 
use the classical transformation equation (2.19), q = U -1 T - i x ,  to help us 
find the quantum mechanical operator above. Writing this out, we have 

ql  =~X1 ~0-1 = C¢1X1 + ~2X2 = OL1 [X1 + (m2)l /2 /B(ml) l /2x2]  
(3.2) 

q2 =~gax2J -1 = °~aXl "- a4x2 = c~3 [xl - B(rn2)l /2/(ml)l /2x2] 

First o f  all, let us use the Baker-Hausdorff expansion (Messiah, 1966a), 
and equation (3.2) can be written as 

5PXl 5p-1 = x  I + i  [S, Xl] + i2/2! [S, [S, Xl] ] + . . . .  
(3.3) 

Y x ~  -1 =x2 +i  [S, x2] + i2/2! [S, [S, xz] ] + . . .  

Next in order to match up the powers of  the independent variables in 
equation (3.2), we try various trial forms for the commutators [S, x l ]  and 
IS, x 2 ], starting with the simpler forms, linear and quadratic, and proceeding 
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to higher orders if necessary. That is, in our example, we construct S, knowing 
it must produce linear commutation relation terms (since the highest-order 
terms of the Hamiltonian are bilinear). These steps are in an effort to find 
an explicit, dosed form for S, similar to what Bjorken & Drel] (1965) do for 
certain operators in quantum field theory. If we try 

IS, x , ]  = G ( x ,  + x2) 
(3.4) 

Is, x2] = C2(x, + x2) 

where C1 and C2 are constants to be determined, then 

IS, IS, x,]]  =c, (c ,  + G ) ( x ,  + x2) 

IS, Is, x2] ] = C~(Cl + G )  (x, + x~) 

IS, IS, [S, X l ] ] ]  = C l ( C  1 + C 2 )  2 (x 1 + x 2 )  

[s, IS, [s, x2ll]  =c2(c, +c~) ~ (x, + x2) 

and 

( f X ~  -1 = X 1 + [i + (i2/2!) (C1 + C2) + (i3/3!) (C1 + C2) 2 + . . . 1  

x G(x ,  + x2) 

9 ° x 2 f  -1 = x 2 + [i + (i2/2!) (C1 + C2) + (i~/3!) (C1 + C2) 2 + . . . ]  

x C2(xl + x2). 

Letting (C 1 + C2) = z, and remembering that 

exp (/z) = 1 + iz + (i2/2!) Z2 + ( i3/3!)Z 3 + . . .  

SO that 

[exp (iz)]/z - 1/z = i + (i2/2!) z + (i3/3!) z 2 + . . .  

(3.s) 

us the following four equations: 

1 + C I [(1/C 1 + C2) [exp (i(Cx + G ) ) I -  ( 1 / G  + c2)1 = 0~1 = - BO~3 (3.7) 

CI [(1/C1 + C2) [exp (i(C 1 + C2))] - (1/Ct  + C2)] = a2 (3.8) 

1 +C2[(1/CI  +C2)  [exp (i(C1 +C2))1 - ( 1 / C i  +C2)] =a4  =Ba2 (3.9) 

C2[(1/C 1 +C2) [exp (i(C 1 + C2))1 - ( 1 / C  1 +C2) ] = a  a (3.10) 

then  

ql =9°xa 9°-t = Xl + (exp[i(C1 + C2)] - 1 ) (x  a + x2)(C1/C 1 -t-C2) 
(3.6) 

q2 =Sgx~ °-1 = x2 + (exp [i(C1 + C2)] - 1) (x a + x2) (C2/C1 + C2) 

Equating the coefficients o fxa  and x 2 from equations (3.2) and (3.6), gives 
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Combining equations (3.7) and (3.10) gives 

1 + (C1/C 1 + C2)[ex p ( i(C 1 + C2)) - 1] = - B ( C 2 / C 1  + C2)[exp (i(C1 + C 2 ) ) - 1 ]  
(3.11) 

and combining equations (3.8) and (3.9) gives 

1 + (C2/C  1 + C2)[ex p (i(C1 + C2)) - I] = B ( C 1 / C t  + C2)[exp (i(C1 + C2)) - 1] 
(3.12) 

Solving for exp ( i (C 1 + C2) ) from equation (3.11) gives 

1 - (C 1 + C2 /BC 2 + C~) = exp ( i(C 1 + C2)) (3.13) 

Using the result of equation (3.13) in equation (3.12) gives 

C 1 = - (B - 1/B + 1) C 2 (3.14) 

Then using equation (3.14) to eliminate C I from equation (3.11) and solving 
for C 2, we have 

C2 = (/3 + 1/2i) In (B 2 - l IB  2 + 1) (3.15) 

Combining this with equation (3.14) gives CI: 

C 1 = -- ( B -  1/20 in (B 2 - l IB  2 + 1) (3.16) 

Thus, the constants in equation (3.4) are determined in terms of known 
parameters. 

Now what is S such that equation (3.4) is satisfied? This is easy to find if 
one remembers the commutation relations Ix i, Pi] = ih6i]" Consequently, if 
we try 

S = ( C l / i h ) ( P l X l  + P l X 2 ) + ( C z / i h ) ( p 2 x 2  + P z X l )  (3.17) 

then 

[S, xl] = ( - C 1 / i h ) [ { [ p l ,  Xl]Xl) + {[Pl, Xl]X2}] 

= - ( C 1 / i h  ) ( - i )  (x I + x2) = Cl(Xl + x2) 

[S, x21 = ( - C 2 / i h ) [ { [ p 2 ,  x2] x z} + {[P2, x 2 ] x l } ]  

= - ( C 2 / i h  ) ( - ih)  (x 2 + x1) = C2(X 1 + X2) 

which is exactly equation (3.4). Therefore, an appropriate S is given by 
equation (3.17), and putting C 1 and 6'2 in from equations (3.15) and 
(3.16) gives 

S = [ln (B 2 - t/B2+ 1)/2h] [ - (B + 1)(P2X2 + P2Xl)  

+ (B - 1) ( p l X l  + PlX;)] (3.18) 

where B is given in equation (2.12); and the unitary transformation operator 
0°is exp (iS). This is the quantum mechanical transformation to diagonalized 
variables up to a phase factor. 

However, since the commutation relations should be preserved under a 
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unitary transformation (Messiah, 1966b), we also need to check them out. 
If they are not preserved, we are inconsistent. Therefore, under the trans- 
formation 

q l  = ~ l X 1  -[- ~2X2 

q2 = O/3X1 + 0~4X2 

p l  = ( ~ l / m l ) p l  + (o~2/m2)P 2 

P2 = (a3/ml)Pl + (a4/m2)P2 (3.19) 

which is carried out byS~, do we have [qi, P]] = ih6ii if we had [xi, p]] = ih6i/? 
We have under the transformation in equation (3.19), 

[ql, Pa] = Ix1, Pl ] (a~/ml) + [x2, Psi (a~/m2) 

= i~(a~/ml + a2/m2) 

[q2, P21 = [xl, Pl] (oL~/rn 1) + Ix2, Pz] (a~/m2) 

= ih(a2/ml) + ih(a~/m2) 

[q 1, P2 ] = ih(cq a J m  a) + ih(a2a4/m2) 

[q2, P1] = ih(cqa3/ml) + ih(a2a4/m2) (3.20) 

This means for our commutation relations to be preserved under the trans- 
formation which simultaneously diagonalizes the quadratic kinetic and 
potential energy forms, we must have 

(a2/ml) + (o~ /m2)  = 1 

(e~/ml) + (a~/rn2) = 1 

(°~30q/m 1) + (°~40~2/m2) = 0 (3.21) 

For our interaction Hamiltonian, 

(a~/ml) + (a~/m2) = A2(B 2 + 1) = (a~lml) + (c~/rn2) 

and 

(O~3al/ml) + (a40t2/m2) = -- (A 2 B)  + A2  B = 0 

Now from equation (2.12), 

A 2 = 1/(1 + B 2) (3.22) 

Thus, 

(a2/ml) + (a~/m2) = 1t(1 + B 2) (B 2 + t)  = 1 

Consequently, equation (3.21) does indeed hold, and the commutation 
relations are preserved. 

In passing, another way of determining C1 and C2 would be to use the 
conditions for preservation of commutation relations, equation (3.21), in 
conjunction with equations (3.7) through (3.10) and eliminate as,  o~2,0¢3, 
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a 4. One can also use them to solve for C 1 and C 2 in terms o f a  1, a2, a3, and 
a4. If this is done, after some tedious algebra, one finds 

C1 = [D/i(1 + D)] ln[{(ut(1 + D) - 1)/D}{(a:(1 + D) + D)/D} 

x {aa(1 +/9,)+ 1}{a4(t + D ) - D } ]  1/4 (3.23) 

and 

C2 = Ca/D (3.24) 

where 

D = [(rn2/ml) ( m : m  z + m~ + m 2 - m l ) / ( m l m  2 + m~ - m 2 + mt)] 1/2 
(3.25) 

These equations show the connections between the classical transformation 
constants, oq, a2, a3, a4, and the quantum mechanical transformation con- 
stants, C1 and C2. 

Thus, we have used the nonunitary, classical transformation to diagonalized 
variables obtained from the simultaneous diagonalization of quadratic forms 
to arrive at the unitary, quantum mechanical transformation to diagonalized 
variables. We may summarize this procedure as follows: 

(1) Follow through the steps of  the simultaneous diagonalization of  
quadratic forms. 

(2) Set the general form of the quantum mechanical transformation on 
coordinates and moments equal to the classical transformation from 
(1). 

(3) Expand the quantum mechanical form of the transformation in the 
Baker-Hausdorff expansion. 

(4) Impose the commutation relations on the coordinates and momenta 
and check that they are preserved under the transformation in (2). 

(5) Select appropriate form of S in the quantum mechanical transforma- 
tion operator 5f= exp (iS) using the information in (3) and (4) and 
the form of the Hamiltonian. 

4. Conclusion 

The above is then a method of obtaining the explicit form of quantum 
mechanical transformations and, as shown of the example above, can be a 
useful method in many cases. Also, in other cases it may be a simpler alter- 
native and could provide a very general method for going to normal co- 
ordinates quantum mechanically in many other models. As illustrated above, 
it works for the very frequently encountered model of coupled oscillators. 
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